Синус, косинус, тангенс: что такое? Как найти синус, косинус и тангенс? Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы Как найти синус зная угол

13.08.2023

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координат точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5. Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и - табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Примеры:

\(\sin{⁡30^°}=\)\(\frac{1}{2}\)
\(\sin⁡\)\(\frac{π}{3}\) \(=\)\(\frac{\sqrt{3}}{2}\)
\(\sin⁡2=0,909…\)

Аргумент и значение

Синус острого угла

Синус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению противолежащего катета к гипотенузе.

Пример :

1) Пусть дан угол и нужно определить синус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить \(sinA\).

Синус числа


Числовая окружность позволяет определить синус любого числа, но обычно находят синус чисел как-то связанных с : \(\frac{π}{2}\) , \(\frac{3π}{4}\) , \(-2π\).

Например, для числа \(\frac{π}{6}\) - синус будет равен \(0,5\). А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Синус для других часто встречающихся в практике чисел смотри в .

Значение синуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен он может быть для абсолютно любого угла и числа.

Синус любого угла

Благодаря единичному кругу можно определять тригонометрические функции не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить \(sin∠КОА\) с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам \(\sin⁡∠KOA\).

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС ) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).

Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.

Как вы могли заменить, и синус числа, и синус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Связь с другими тригонометрическими функциями:

Функция \(y=\sin⁡x\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения синуса, мы получим следующий график:

График данной называется синусоида и обладает следующими свойствами:

Область определения – любое значение икса: \(D(\sin⁡x)=R\)
- область значений – от \(-1\) до \(1\) включительно: \(E(\sin⁡x)=[-1;1]\)
- нечетная: \(\sin⁡(-x)=-\sin⁡x\)
- периодическая с периодом \(2π\): \(\sin⁡(x+2π)=\sin⁡x\)
- точки пересечения с осями координат:
ось абсцисс: \((πn;0)\), где \(n ϵ Z\)
ось ординат: \((0;0)\)
- промежутки знакопостоянства:
функция положительна на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
- промежутки возрастания и убывания:
функция возрастает на интервалах: \((-\)\(\frac{π}{2}\) \(+2πn;\) \(\frac{π}{2}\) \(+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((\)\(\frac{π}{2}\) \(+2πn;\)\(\frac{3π}{2}\) \(+2πn)\), где \(n ϵ Z\)
- максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=\)\(\frac{π}{2}\) \(+2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=-\)\(\frac{π}{2}\) \(+2πn\), где \(n ϵ Z\).

Таблицы значений синусов (sin), косинусов (cos), тангенсов (tg), котангенсов (ctg) - это мощный и полезный инструмент, помогающий решать множество задач, как теоретического, так и прикладного характера. В этой статье мы приведем таблицу основных тригонометрических функций (синусов, косинусов, тангенсов и котангенсов) для углов 0, 30, 45, 60, 90, ..., 360 градусов (0 , π 6 , π 3 , π 2 , . . . , 2 π радиан). Также будут показаны отдельные таблицы Брадиса для синусов и косинусов, тангенсов и котангенсов с пояснением, как их использовать для нахождения значений основных тригонометрических функций.

Таблица основных тригонометрических функций для углов 0, 30, 45, 60, 90, ..., 360 градусов

Исходя из определений синуса, косинуса, тангенса и котангенса можно найти значения этих функций для углов 0 и 90 градусов

sin 0 = 0 , cos 0 = 1 , t g 0 = 0 , котангенс нуля - не определен,

sin 90 ° = 1 , cos 90 ° = 0 , с t g 90 ° = 0 , тангенс дявяноста градусов не определен.

Значения синусов, косинусов, тангенсов и котангенсов в курсе геометрии определяются как соотношения сторон прямоугольного треугольника, углы которого равны 30, 60 и 90 градусов, и также 45, 45 и 90 градусов.

Определение тригонометрических функуций для острого угла в прямоугольном треугольнике

Синус - отношение противолежащего катета к гипотенузе.

Косинус - отношение прилежащего катета к гипотенузе.

Тангенс - отношение противолежащего катета к прилежащему.

Котангенс - отношение прилежащего катета к противолежащему.

В соответствии с определениями находятся значения функций:

sin 30 ° = 1 2 , cos 30 ° = 3 2 , t g 30 ° = 3 3 , c t g 30 ° = 3 , sin 45 ° = 2 2 , cos 45 ° = 2 2 , t g 45 ° = 1 , c t g 45 ° = 1 , sin 60 ° = 3 2 , cos 45 ° = 1 2 , t g 45 ° = 3 , c t g 45 ° = 3 3 .

Сведем эти значения в таблицу и назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Таблица основных значений синусов, косинусов, тангенсов и котангенсов

α ° 0 30 45 60 90
sin α 0 1 2 2 2 3 2 1
cos α 1 3 2 2 2 1 2 0
t g α 0 3 3 1 3 н е о п р е д е л е н
c t g α н е о п р е д е л е н 3 1 3 3 0
α , р а д и а н 0 π 6 π 4 π 3 π 2

Одно из важных свойств тригонометрических функций - периодичность. На основе этого свойства данную таблицу можно расширить,используя формулы приведения. Ниже представим расширенную таблицу значений основных тригонометрических функций для углов 0, 30, 60, ... ,120, 135, 150, 180, ... , 360 градусов (0 , π 6 , π 3 , π 2 , . . . , 2 π радиан).

Таблица синусов, косинусов, тангенсов и котангенсов

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
sin α 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
cos α 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
t g α 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
c t g α - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α , р а д и а н 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π 7 π 6 5 π 4 4 π 3 3 π 2 5 π 3 7 π 4 11 π 6 2 π

Периодичность синуса, косинуса, тангенса и котангенса позволяет расширять эту таблицу до сколь угодно больших значений углов. Значения, собранные в таблице, используются при решении задач чаще всего, поэтому их рекомендуется выучить наизусть.

Как пользоваться таблицей основных значений тригонометрических функций

Принцип пользования таблицей значений синусов, косинусов, тангенсов и котангенсов понятен на интуитивном уровне. Пересечение строки и столбца дает значение функции для конкретного угла.

Пример. Как пользоваться таблицей синусов, косинусов, тангенсов и котангенсов

Нужно узнать, чему равен sin 7 π 6

Находим в таблице столбец, значение последней ячейки которого равно 7 π 6 радиан - то же самое, что 210 градусов. Затем выбираем сроку таблицы, в которой представлены значения синусов. На пересечении строки и столбца находим искомое значение:

sin 7 π 6 = - 1 2

Таблицы Брадиса

Таблица Брадиса позволяет вычислить значение синуса, косинуса, тангенса или котангенса с точностью до 4-х знаков после запятой без использования вычислительной техники. Это своего рода замена инженерному калькулятору.

Справка

Владимир Модестович Брадис (1890 - 1975) - советский математик-педагог, с 1954 года член-корреспондент АПН СССР. Таблицы четырёхзначных логарифмов и натуральных тригонометрических величин, разработанные Брадисом, впервые вышли в 1921 году.

Сначала приведем таблицу Брадиса для синусов и косинусов. Она позволяет достаточно точно вычислять приближенные значения этих функций для углов, содержащих целое количество градусов и минут. В крайнем левом столбце таблицы представлены градусы, а в верхней строке - минуты. Отметим, что все значения углов таблицы Брадиса кратны шести минутам.

Таблица Брадиса для синусов и косинусов

sin 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" cos 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70° 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45° 2 4 6
45° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
sin 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" cos 1" 2" 3"

Для нахождения значений синусов и косинусов углов, не представленных в таблице, необходимо использовать поправки.

Теперь приведем таблицу Брадиса для тангенсов и котангенсов. Она содержит значения тангенсов углов от 0 до 76 градусов, и котангенсов углов от 14 до 90 градусов.

Таблица Брадиса для тангенса и котангенса

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70° 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45° 6 11 17
45° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70° 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

Как пользоваться таблицами Брадиса

Рассмотрим таблицу Брадиса для синусов и косинусов. Все, что относится к синусам находится вверху и слева. Если нам нужны косинусы - смотрим на правую сторону внизу таблицы.

Для нахождения значений синуса угла нужно найти пересечение строки, содержащей в крайней левой ячейке необходимое количество градусов, и столбца, содержащего в верхней ячейке необходимое число минут.

Если точного значения угла нет в таблице Брадиса, прибегаем к помощи поправок. Поправки на одну, две и три минуты даны в крайних правых столбцах таблицы. Для нахождения значения синуса угла, которого нет в таблице, находим самое близкое к нему значение. После этого прибавляем или отнимаем поправку, соответствующую разнице между углами.

В случае, если мы ищем синус угла, который больше 90 градусов, сначала нужно воспользоваться формулами приведения, а уже потом - таблицей Брадиса.

Пример. Как пользоваться таблицей Брадиса

Пусть нужно найти синус угла 17 ° 44 " . По таблице находим, чему равен синус 17 ° 42 " и прибавляем к его значению поправку на две минуты:

17 ° 44 " - 17 ° 42 " = 2 " (н е о б х о д и м а я п о п р а в к а) sin 17 ° 44 " = 0 . 3040 + 0 . 0006 = 0 . 3046

Принцип работы с косинусами, тангенсами и котангенсами аналогичен. Однако, важно помнить о знаке поправок.

Важно!

При вычислении значений синусов поправка имеет положительный знак, а при вычислении косинусов поправку необходимо брать с отрицательным знаком.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

© shcool3murom.ru, 2024
35-я параллель - Образовательный портал